Abstract
Thermoelectric devices can help to tackle future challenges in the energy sector through the conversion of waste heat directly into usable electric energy. For a wide applicability low‐cost materials with reasonable thermoelectric performances and cost‐efficient preparation techniques are required. In this context metal oxides are an interesting class of materials because of their inherent high‐temperature stability and relative high sustainability. Their thermoelectric performance, however, needs to be improved for wide application. Compounds with adaptive structures are a very interesting class of materials. A slight reduction of early transition metal oxides generates electrons as charge carriers and crystallographic shear planes as structure motif. The crystallographic shear planes lead to a reduction of intrinsic thermal conductivity. At the same time, the electronic transport properties can be tuned by the degree of reduction. So far only a few transition metal oxides with adaptive structures have been investigated with respect to their thermoelectric properties, leaving much room for improvement. This review gives an overview of thermoelectric oxides, highlights the structural aspects of the crystallographic shear planes and the resulting thermoelectric properties.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.