Abstract
Highly efficient gas sensors able to detect and identify hazardous gases are crucial for numerous applications. Array of conventional single-output sensors is currently limited by problems including drift, large size, and high cost. Here, we report a sensor with multiple chemiresistive and potentiometric outputs for discriminative gas detection. Such sensor is applicable to a wide range of semiconducting electrodes and solid electrolytes, which allows to tailor and optimize the sensing pattern by tuning the material combination and conditions. The sensor performance is boosted by equipping a mixed-conducting perovskite electrode with reverse potentiometric polarity. A conceptual sensor with dual sensitive electrodes achieves superior three-dimensional (sub)ppm sensing and discrimination of humidity and seven hazardous gases (2-Ethylhexanol, ethanol, acetone, toluene, ammonia, carbon monoxide, and nitrogen dioxide), and enables accurate and early warning of fire hazards. Our findings offer possibilities to design simple, compact, inexpensive, and highly efficient multivariate gas sensors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Nature Communications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.