Abstract

Sulfur- and nitrogen-doped carbon quantum dots (S,N-CQDs) were prepared by a solid-phase hydrothermal method from cysteine and citric acid and characterized by transmission electron microscopy, energy-dispersive X-ray spectroscopy, and FTIR spectroscopy. These QDs were exploited as enhancers to amplify the chemiluminescence (CL) of manganese(IV)-sodium sulfite reaction. S,N-CQDs exceptionally enhanced the CL intensity of this system, around 900-fold. This effect was attributed to the energy transfer from SO2*, produced by reaction of Mn(IV) with SO32-, to S,N-CQDs. The maximum wavelength of CL emission was 480nm, which confirmed that the final emitting species was S,N-CQDs. After optimization of reaction conditions, the analytical applicability of S,N-CQD-Mn(IV)-SO32- CL system was studied. In the presence of oxytetracycline, the CL intensity was significantly diminished. A linear relationship was observed between CL signal and the logarithm of oxytetracycline concentration in the range of 0.075-3.0μM with a detection limit of 25nM. This CL assay for oxytetracycline was used for analysis of spiked milk and water samples. Graphical abstractSchematic representation of the amplified chemiluminescence (CL) reaction consisting of sulfur- and nitrogen-doped carbon quantum dots (S,N-CQDs) Mn(IV) and Na2SO3. Sub-micromolar levels of oxytetracycline can be determined by using this system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.