Abstract

We prepared a novel chemically amplified photosensitive polyimide based on a blend of poly(amic acid ethoxymethyl ester) (PAAE) and poly(amic acid); this blend produces polyimide (PI) films with improved mechanical properties after imidization with photoacid generator (PAG). PAAE and poly(amic acid) were end-capped with 5-norbornene-2,3-dicarboxylic dianhydride and 2,3-dimethyl maleic anhydride, respectively, to lower their molecular weights without compromising the properties of the resulting PI films. As a result of the blending of these PI precursors, the mechanical properties of the PI films were found to be less affected by the strong acid generated from the PAG than PI films fabricated by imidization of PAAE alone. The relatively high solubility of the blended PI precursor film in basic aqueous solutions was found to be effectively controlled by the use of a high-temperature post-exposure bake process to partially imidize the end-capped PAA. It was found that a 10-μm-thick film of the PSPI precursor system containing 13 wt% PAGs exhibits a sensitivity ( D 0) of 700 mJ/cm 2 when developed with 2.38 wt% aqueous tetramethyl ammonium hydroxide solution at room temperature. A fine positive pattern was fabricated in a 12 μm thick film with 1000 mJ/cm 2 of i-line exposure. The resultant PI film was also found to exhibit excellent mechanical and thermal properties, which are critical to its practical use as a stress buffer layer in semiconductor packaging.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.