Abstract

We study an autonomous model of a Maxwell demon that works by rectifying thermal fluctuations of chemical reactions. It constitutes the chemical analog of a recently studied electronic demon. We characterize its scaling behavior in the macroscopic limit, its performances, and the impact of potential internal delays. We obtain analytical expressions for all quantities of interest: the generated reverse chemical current, the output power, the transduction efficiency, and correlation between the number of molecules. Due to a bound on the nonequilibrium response of its chemical reaction network, we find that, contrary to the electronic case, there is no way for the Maxwell demon to generate a finite output in the macroscopic limit. Finally, we analyze the information thermodynamics of the Maxwell demon from a bipartite perspective. In the limit of a fast demon, the information flow is obtained, its pattern in the state space is discussed, and the behavior of partial efficiencies related to the measurement and feedback processes is examined.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.