Abstract

Nitric oxide (nitrogen monoxide, NO) plays a veritable cornucopia of regulatory roles in normal physiology. In contrast, NO has also been implicated in the etiology and sequela of numerous neurodegenerative diseases that involve reactive oxygen species (ROS) and nitrogen oxide species (RNOS). In this setting, NO is often viewed solely as pathogenic; however, the chemistry of NO can also be a significant factor in lessening injury mediated by both ROS and RNOS. The relationship between NO and oxidation, nitrosation, and nitration reactions is summarized. The salient factors that determine whether NO promotes, abates, or interconnects these chemistries are emphasized. From this perspective of NO chemistry, the type, magnitude, location, and duration of either ROS or RNOS reactions may be predicted.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.