Abstract
Knowledge of RNA structure can greatly facilitate the understanding of its biological function. However, the physical properties of RNA, especially its conformational heterogeneity, present an impediment to high-resolution structural analysis. Thus, lower resolution methods such as biochemical probing, phylogenetic analysis, and molecular modeling have come to serve an important role in RNA science. This situation has created the need for a means by which to constrain RNA structure, either to reduce its conformational flexibility or to help distinguish between alternative structural models. To address this need, we have developed chemistry that permits the site-specific introduction of functionalizable tethers into RNA. Here we report the design and synthesis of reagents for use in solid-phase RNA synthesis that allow the functionalization of the base moiety of G, C, and A residues. Upon incorporation into oligonucleotides and subsequent treatment with alkylamines, the convertible nucleoside derivatives r...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.