Abstract

Fuel anti-knock quality is a critical property with respect to the effective design of next-generation spark-ignition engines which aim to have increased efficiency, and lower emissions. Increasing evidence in the literature supports the fact that the current regulatory measures of fuel anti-knock quality, the research octane number (RON), and motor octane number (MON), are becoming decreasingly relevant to commercial engines. Extrapolation and interpolation of the RON/MON scales to the thermodynamic conditions of modern engines is potentially valuable for the synergistic design of fuels and engines with greater efficiency. The K-value approach, which linearly weights the RON/MON scales based on the thermodynamic history of an engine, offers a convenient experimental method to do so, although complementary theoretical interpretations of K-value measurements are lacking in the literature.This work uses a phenomenological engine model with a detailed chemical kinetic model to predict and interpret known trends in the K-value with respect to engine intake temperature, pressure, and engine speed. The modelling results support experimental trends which show that the K-value increases with increasing intake temperature and engine speed, and decreases with increasing intake pressure. A chemical kinetic interpretation of trends in the K-value based on fundamental ignition behaviour is presented. The results show that combined experimental/theoretical approaches, which employ a knowledge of fundamental fuel data (gas phase kinetics, ignition delay times), can provide a reliable means to assess trends in the real-world performance of commercial fuels under the operating conditions of modern engines.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call