Abstract

Known as Golden Algae in popular media, the harmful algal bloom causing organism Prymnesium parvum secretes increased amounts of toxic chemicals called prymnesins when stressed, resulting in major fish kills in Texas. Although many options exist for mitigation of blooms, a feasible protocol for control of blooms on large-scale impoundments has yet to be identified. Chemical control of P. parvum using six different enzyme inhibiting aquatic herbicides was explored in laboratory experiments. Of the six chemicals screened, one (flumioxazin) was selected for further study due to a significant decrease in P. parvum cell numbers with increasing chemical concentration. It was applied to natural plankton communities during in-situ experiments (Lake Granbury, Texas). The first experiment was conducted during a period of P. parvum bloom initiation (March) and the second experiment conducted during a post bloom period (April). Experiments were carried out in 20 L polycarbonate carboys covered in 30% shade cloth to simulate natural light, temperature and turbulence conditions. Through cell counts via light-microscopy, the chemical flumioxazin was found to cause significant decreases in P. parvum, but no significant differences in zooplankton abundance during the period of bloom initiation. However, significant decreases in adult copepods were observed during the post bloom period, with no significant decreases in P. parvum most likely due to decreased light penetration and inhibition of the photosensitive mode of action.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call