Abstract
The determination of trace metals in seawater is an important project of marine environmental monitoring. However, the presence of many alkali metal ions with high concentration, such as sodium ion, seriously interferes with the detection limit and accuracy of atomic absorption spectrometry (AAS, flame/graphite furnace integrated). The conventional chemical methods for the enrichment of trace metals are complex, and low boiling point organic solvents are used. In this paper, a kind of commercial cross-linked polystyrene resin microspheres was chloromethylated and aminated to introduce EDTA-type amino polycarboxylic groups and then loaded in a column as the absorption filler. A set of seawater pretreatment and enrichment devices was designed and assembled. The enriching process and conditions of trace Cu, Zn, Pb, and Cd in standard seawater were studied. 10 g of the modified resin could enrich the equivalent seawater and remove successfully the light metal ions. pH = 5∼9 and 0.2 mL/min of the flow rate were the suitable conditions for preconcentration. The enriched metal ions in the eluent were analyzed on the AAS. Compared with the conventional solvent method, the novel material and enrichment device have high preconcentration efficiency, strong anti-interference ability, and low cost and could be directly applied for routine seawater detection.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.