Abstract

This paper is concerned with a Chebyshev quadrature rule for approximating one sided finite part integrals with smooth density functions. Our quadrature rule is based on the Chebyshev interpolation polynomial with the zeros of the Chebyshev polynomial T N +1 ( τ )− T N −1 ( t ). We analyze the stability and the convergence for the quadrature rule with a differentiable function. Also we show that the quadrature rule has an exponential convergence when the density function is analytic.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.