Abstract

This article introduces a new method for discretizing and solving integral equation formulations of Maxwell's equations, which achieves spectral accuracy for smooth surfaces. The approach is based on a hybrid Nyström-collocation method using Chebyshev polynomials to expand the unknown current densities over curvilinear quadrilateral surface patches. As an example, the proposed strategy is applied to the magnetic field integral equation (MFIE) and the N-Müller formulation for scattering from metallic and dielectric objects, respectively. The convergence is studied for several different geometries, including spheres, cubes, and complex NURBS geometries imported from CAD software, and the results are compared against a commercial Method-of-Moments solver using RWG basis functions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.