Abstract

We improve the Chebotarev variant of the Brun-Titchmarsh theorem proven by Lagarias, Montgomery, and Odlyzko using the log-free zero density estimate and zero repulsion phenomenon for Hecke L-functions that were recently proved by the authors. Our result produces an improvement for the best unconditional bounds toward two conjectures of Lang and Trotter regarding the distribution of traces of Frobenius for elliptic curves and holomorphic cuspidal modular forms. We also obtain new results on the distribution of primes represented by positive-definite integral binary quadratic forms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.