Abstract

We apply generalized cross-validation (GCV) as a stopping rule for general linear stationary iterative methods for solving very large-scale, ill-conditioned problems. We present a new general formula for the influence operator for these methods and, using this formula and a Monte Carlo approach, we show how to compute the GCV function at a cheaper cost. Then we apply our approach to a well known iterative method (ART) with simulated data in positron emission tomography (PET).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.