Abstract

The standard quantum mechanical description of the motion of a charged particle in the field of a stationary magnetic monopole is notorious for the presence of unnatural singularities in the Hamiltonian operator originating in the vector potential A(r) used to describe the magnetic field of the monopole. In this paper, an elementary quantum mechanical formulation of the problem which involves only the physically observable field B(r) is presented. This is achieved by treating as a fundamental observable of the charged particle its kinetic momentum instead of the linear momentum p. An irreducible representation of the fundamental commutation relations involving the operators and is explicitly constructed. It is shown that the existence of an irreducible representation requires that Dirac’s charge quantization condition is satisfied. Also, it is demonstrated that, from the quantum mechanical perspective, the singularities (appearing when the vector potential is introduced) are in fact properties of coordinate representations of the fundamental commutation relations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call