Abstract
Pharmaceuticals have been continuously detected from surface water and groundwater. In order to improve the rejection performance of pharmaceuticals by a nanofiltration membrane (NF), a positively charged membrane was prepared by co-deposition of natural gallic acid and polyethyleneimine on the polyacrylonitrile hydrolysis membrane. Effects of gallic acid concentration, polyethylene imine concentration, reaction time, and the molecular weight of polyethylene imine were documented. The physical and chemical properties of the membrane were also investigated by surface morphology, hydrophilicity, surface charge, and molecular weight cut-off. The optimized membrane had a molecular weight cut-off of about 958 Da and possessed a pure water permeability of 74.21 L·m-2·h-1·MPa-1. The results exhibited salt rejection in the following order: MgCl2 > CaCl2 > MgSO4 > Na2CO3 > NaCl > Na2SO4, while the rejection ability of pharmaceuticals is as follows: amlodipine > atenolol > carbamazepine > ibuprofen, suggesting that the positively charged membrane has enhanced retention to both divalent cations and charged pharmaceuticals. In addition, the antibacterial membrane was obtained by loading silver nanoparticles onto the positively charged membrane, which greatly improved the antibacterial ability of the membrane.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Water science and technology : a journal of the International Association on Water Pollution Research
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.