Abstract
This paper presents a method to calculate the corona power loss and the ground level electric field values for single- and three-phase power transmission lines. The charge simulation technique is applied in which the surface charge on the stressed conductor(s) as well as the space charges around each conductor are represented by a discrete set of unknown infinite line charges. Satisfying the properly chosen boundary conditions at the transmission line conductors results in a system of linear algebraic equations whose solution evaluates the unknown line charges. The emission of ions from a conductor surface is assumed to take place when the magnitude of the charge simulating its surface charge exceeds an onset value based on the predetermined onset field values for both positive and negative half cycles. The simulation space line charges are displaced back and forth to the conductor by the action of the electric field whose magnitude and direction depends on the simulation charges in the conductor and in the surrounding space. Recombination process takes place whenever charges of opposite polarities meet together. The calculated corona power loss for single- and three-phase power transmission lines agreed satisfactorily with those reported earlier.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.