Abstract

To determine whether R282 in transmembrane segment 7 (TMS7) of hPepT1 forms a salt bridge with D341 in TMS8. Mutated hPepT1 transporters containing point mutations at R282 and/or D341 were transiently transfected into HEK293 cells. Their steady state expression and functional activity were measured using immunoprecipitation and 3H-gly-sar uptake, respectively. Gly-sar uptake by cysteine mutants (R282C and D341C) was also measured in the presence and absence of cysteine-modifying MTS reagents. The reverse-charge mutants R282D-hPepT1 and D341R-hPepT1 showed significantly reduced gly-sar uptake, but the double mutant (R282D/D341R-hPepT1) has functionality comparable to that of wild-type hPepT1. Gly-sar uptake by R282C-hPepT1 is reduced, but pre-incubation with 1 mM MTSET, a positively charged cysteine-modifying reagent, restored function to wild-type levels. Similarly, pre-incubation of D341C-hPepT1 with 10 mM MTSES, a negatively charged cysteine-modifying reagent, increased gly-sar uptake compared to unmodified D341C-hPepT1. In contrast, MTSET modification of D341C-hPepT1 (giving a positive charge at position 341) resulted in significant reduction in gly-sar uptake, compared to D341C-hPepT1. Our results are consistent with a salt bridge between R282 and D341 in hPepT1, and we use these and other data to propose a role for the R282-D341 charge pair in the hPepT1 translocation mechanism.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.