Abstract

This paper presents a charge-domain in-memory computing (IMC) macro for precision-scalable deep neural network accelerators. The proposed Dual-SRAM cell structure with coupling capacitors enables charge-domain multiply and accumulate (MAC) operation with variable-precision signed weights. Unlike prior charge-domain IMC macros that only support binary neural networks or digitally compute weighted sums for MAC operation with multi-bit weights, the proposed macro implements analog weighted sums for energy-efficient bit-scalable MAC operations with a novel series-coupled merging scheme. A test chip with a 16-kb SRAM macro is fabricated in 28-nm FDSOI process, and the measured macro throughput is 125.2-876.5 GOPS for weight bit-precision varying from 2 to 8. The macro also achieves energy efficiency ranging from 18.4 TOPS/W for 8-b weight to 119.2 TOPS/W for 2-b weight.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.