Abstract

Background and purposeLiver fibrosis constitutes a pathologic condition resulting in a series of advanced liver diseases. Oleanane-type saponins are distinctive active constituents in the medicinal plant Panax japonicus C. A. Mey (P. japonicus). Herein, we assessed protective effects of a characterized saponin extract of rhizomes of P. japonicus (SEPJ) on hepatocyte EMT and HSC activation in vitro and liver fibrosis in mice. We also investigated molecular mechanisms underlying the hepatoprotective activity of SEPJ. MethodsEMT of AML-12 hepatocytes was evaluated by observing morphology of cells and quantifying EMT marker proteins. Activation of LX-2 HSCs was assessed via scratch assay, transwell assay, and EdU-incorporation assay, and by quantifying activation marker proteins. Liver fibrosis in mice was evaluated by HE, SR, and Masson staining, and by measuring related serum indicators. Immunoblotting and RT-PCR were performed to study mechanisms underlying the action of SEPJ. ResultsSEPJ inhibited TGF-β-induced EMT in AML-12 hepatocytes and activation of LX-2 HSCs. SEPJ elevated Akt phosphorylation at Ser473 and GSK3β phosphorylation at Ser9 in these cells, giving rise to a descent of the catalytic activity of GSK3β. These events increased levels of both total and nuclear Nrf2 protein and upregulated expressions of Nrf2-responsive antioxidative genes. In addition, enhanced phosphorylation of Akt and GSK3β acted upstream of SEPJ-mediated activation of Nrf2. Knockdown of Nrf2 or inhibition of Akt diminished the protective activity of SEPJ against TGF-β in both AML-12 and LX-2 cells. Our further in vivo experiments revealed that SEPJ imposed a considerable alleviation on CCl4-provoked mouse liver fibrosis. Moreover, hepatic Akt/GSK3β/Nrf2 cascade were potentiated by SEPJ. Taken together, our results unveiled that SEPJ exerted protective effects against fibrogenic cytokine TGF-β in vitro and ameliorated liver fibrosis in mice. Mechanistically, SEPJ regulated the Akt/GSK3β/Nrf2 signaling which subsequently enhanced intracellular antioxidative capacity. ConclusionsSEPJ inhibits hepatocyte EMT and HSC activation in vitro and alleviates liver fibrosis in mice. Modulation of the Akt/GSK3β/Nrf2 cascade attributes to its hepatoprotective effects. Our findings support a possible application of SEPJ in the control of liver fibrosis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.