Abstract

Basic properties of rewriting systems can be stated in the framework of abstract reduction systems (ARS). Properties like confluence (or Church–Rosser, CR) and weak confluence (or weak Church–Rosser, WCR) and their relationships can be studied in this setting: as a matter of fact, well-known counterexamples to the implication WCR ⇒ CR have been formulated as ARS. In this paper, starting from the observation that such counterexamples are structurally similar, we set out a graph-theoretic characterization of WCR ARS that is not CR in terms of a suitable class of reduction graphs, such that in every WCR not CR ARS, we can embed at least one element of this class. Moreover, we give a tighter characterization for a restricted class of ARS enjoying a suitable regularity condition. Finally, as a consequence of our approach, we prove some interesting results about ARS using the mathematical tools developed. In particular, we prove an extension of the Newman's lemma and we find out conditions that, once assumed together with WCR property, ensure the unique normal form property. The Appendix treats two interesting examples, both generated by graph-rewriting rules, with specific combinatorial properties.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.