Abstract
We investigate the Anderson metal-insulator transition for random Schrödinger operators. We define the strong insulator region to be the part of the spectrum where the random operator exhibits strong dynamical localization in the Hilbert-Schmidt norm. We introduce a local transport exponent β(E) and set the weak metallic transport region to be the part of the spectrum with nontrivial transport (i.e., β(E)>0). We prove that these insulator and metallic regions are complementary sets in the spectrum of the random operator and that the local transport exponent β(E) provides a characterization of the metal-insulator transport transition. Moreover, we show that if there is such a transition, then β(E) has to be discontinuous at a transport mobility edge. More precisely, we show that if the transport is nontrivial, then β(E)≥1/(2d), where d is the space dimension. These results follow from a proof that slow transport of quantum waves in random media implies the starting hypothesis for the authors' bootstrap multiscale analysis. We also conclude that the strong insulator region coincides with the part of the spectrum where we can perform a bootstrap multiscale analysis, proving that the multiscale analysis is valid all the way up to a transport mobility edge.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.