Abstract
Given an ordering of the variables according to nonincreasing coefficients of the objective function $c^T x$, the nonnegative matrix A is said to be greedy if, under arbitrary nonnegative constraint vectors b and h, the greedy algorithm maximizes $c^T x$ subject to $Ax \leq b,0 \leq x \leq h$. Extending a result of Hoffman, Kolen, and Sakarovitch for $(0,1)$-matrices, we characterize greedy matrices in terms of forbidden submatrices, which yields polynomial recognition algorithms for various classes of greedy matrices. The general recognition problem for the existence of forbidden submatrices is shown to be NP-complete.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.