Abstract

In this paper we prove that every coseparable involutory Hopf algebra over the ring of integers Z which is a free Z-module is the group ring of some group. This result was proved independently for Hopf algebras which are finitely generated Z-modules by H.-J. Schneider [6], using similar techniques. We then give some examples of coseparable Hopf algebras over number rings which are not group algebras, and give an example of a cocommutative coseparable coalgebra over a number ring which cannot be given a multiplicative structure making it into a Hopf algebra. The Hopf algebra structure theory required for this paper is found in [1], [4], and [5]. For completeness we give proofs here of the coalgebra analogues to some “well-known” facts about separable algebras.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.