Abstract

Let R be a noncommutative prime ring, U be the left Utumi quotient ring of R, and k, m, n, r be fixed positive integers. If there exist a generalized derivation G and a derivation g (which is independent of G) of R such that [G(xm)xn + xng(xm), xr]k = 0, for all x ∈ R, then there exists a ∈ U such that G(x) = ax, for all x ∈ R. As a consequence of the result in the present article, one may obtain Theorem 1 in Demir and Argaç [10].

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.