Abstract

In this paper we give a characterization of dual Banach lattices. In fact, we prove that a Banach function space E on a separable measure space which has the Fatou property is a dual Banach lattice if and only if all positive operators from L 1(0,1) into E are abstract kernel operators, hence extending the fact, proved by M. Talagrand, that separable Banach lattices with the Radon-Nikodym property are dual Banach lattices.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.