Abstract

AbstractIt has been shown that a holomorphic function f in the unit ball of ℂn belongs to the weighted Bergman space , p > n + 1 + α, if and only if the function | f(z) – f(w)|/|1 – 〈z, w〉| is in Lp( × , dvβ × dvβ), where β = (p + α – n – 1)/2 and dvβ(z) = (1 – |z|2)βdv(z). In this paper we consider the range 0 < p < n + 1 + α and show that in this case, f ∈ (i) if and only if the function | f(z) – f(w)|/|1 – hz, wi| is in Lp( × , dvα × dvα), (ii) if and only if the function | f(z)– f(w)|/|z–w| is in Lp( × , dvα × dvα). We think the revealed difference in the weights for the double integrals between the cases 0 < p < n + 1 + α and p > n + 1 + α is particularly interesting.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.