Abstract

The performance scaling of gas-fed pulsed plasma thrusters (GFPPTs) is investigated theoretically and experimentally. A characteristic velocity for GFPPTs that depends on the inductance-per-unit-length and the square root of the capacitance to initial inductance ratio has been identifled. An analytical model of the discharge current predicts the e‐ciency to be proportional to the GFPPT performance scaling number, deflned here as the ratio of the exhaust velocity to the GFPPT characteristic velocity. To test the validity of the predicted scaling relations, the performance of two rapid-pulse-rate GFPPT designs, PT5 (coaxial electrodes) and PT9 (parallel-plate electrodes), has been measured over 70 difierent operating conditions with argon propellant. The measurements demonstrate that the impulse bit scales linearly with the integral of the discharge current squared as expected for an electromagnetic accelerator. The measured performance scaling in both electrode geometries is shown to be in good agreement with theoretical predictions using the performance scaling number. Normalizing the exhaust velocity and the impulse-to-energy ratio by the GFPPT characteristic velocity collapses almost all the measured data onto single curves that represent the scaling relations for these GFPPTs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.