Abstract

In this paper, we develop a consistent, phenomenological methodology to measure preferred-frame effects (PFEs) in binary pulsars that exhibit a high rate of periastron advance. We show that in these systems the existence of a preferred frame for gravity leads to an observable characteristic ‘signature’ in the timing data, which uniquely identifies this effect. We expand the standard Damour–Deruelle timing formula to incorporate this ‘signature’ and show how this new PFE timing model can be used to either measure or constrain the parameters related to a violation of the local Lorentz invariance of gravity in the strong internal fields of neutron stars. In particular, we demonstrate that in the presence of PFEs we expect a set of the new timing parameters to have a unique relationship that can be measured and tested incontrovertibly. This new methodology is applied to the Double Pulsar, which turns out to be the ideal test system for this kind of experiment. The currently available data set allows us only to study the impact of PFEs on the orbital precession rate, , providing limits that are, at the moment, clearly less stringent than existing limits on PFE strong-field parameters. However, simulations show that the constraints improve fast in the coming years, allowing us to study all new PFE timing parameters and to check for the unique relationship between them. Finally, we show how a combination of several suitable systems in a PFE antenna array, expected to be available, for instance, with the Square Kilometre Array (SKA), provides full sensitivity to possible violations of local Lorentz invariance in strong gravitational fields in all directions of the sky. This PFE antenna array may eventually allow us to determine the direction of a preferred frame should it exist.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.