Abstract

Active contour models have been widely used in image segmentation, and the level set method (LSM) is the most popular approach for solving the models, via implicitly representing the contour by a level set function. However, the LSM suffers from high computational burden and numerical instability, requiring additional regularization terms or re-initialization techniques. In this paper, we use characteristic functions to implicitly represent the contours, propose a new representation to the geodesic active contours and derive an efficient algorithm termed as the iterative convolution-thresholding method (ICTM). Compared to the LSM, the ICTM is simpler and much more efficient. In addition, the ICTM enjoys most desired features of the level set-based methods. Extensive experiments, on 2D synthetic, 2D ultrasound, 3D CT, and 3D MR images for nodule, organ and lesion segmentation, demonstrate that the proposed method not only obtains comparable or even better segmentation results (compared to the LSM) but also achieves significant acceleration.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call