Abstract
Abstract We use statistics of flats of small rank in order to characterise the jointless Dowling geometries defined by groups of order exceeding three and having rank greater than 3. In particular, we show that if the Tutte polynomial of a matroid is identical to the Tutte polynomial of a jointless Dowling geometry, then the matroid is indeed a jointless Dowling geometry. For rank 3 (and groups of order exceeding 3) this holds only if the order of the group is even.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.