Abstract

Clique-width of graphs is defined algebraically through operations on graphs with vertex labels. We characterise the clique-width in a combinatorial way by means of partitions of the vertex set, using trees of nested partitions where partitions are ordered bottom-up by refinement. We show that the correspondences in both directions, between combinatorial partition trees and algebraic terms, preserve the tree structures and that they are computable in polynomial time. We apply our characterisation to linear clique-width. And we relate our characterisation to a clique-width characterisation by Heule and Szeider that is used to reduce the clique-width decision problem to a satisfiability problem.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.