Abstract

Aiming at the problems of small key space and weak resistance to differential attacks in existing encryption algorithms, we proposed a chaotic digital image encryption scheme based on an optimized artificial fish swarm algorithm and DNA coding. First, the key is associated with the ordinary image pixel through the MD5 hash operation, and the hash value generated by the ordinary image is used as the initial value of the hyper-chaotic system to increase the sensitivity of the key. Next, the artificial fish school algorithm is used to scramble the positions of pixels in the block. In addition, scrambling operation between blocks is proposed to increase the scrambling effect. In the diffusion stage, operations are performed based on DNA encoding, obfuscation, and decoding technologies to obtain encrypted images. The research results show that the optimized artificial fish swarm algorithm has good convergence and can obtain the global optimal solution to the greatest extent. In addition, simulation experiments and security analysis show that compared with other encryption schemes, the scheme proposed in this paper has a larger key space and better resistance to differential attacks, indicating that the proposed algorithm has better encryption performance and higher security.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call