Abstract

Chaotic encryption schemes are believed to provide greater level of security than conventional ciphers. In this paper, a chaotic stream cipher is first constructed and then its hardware implementation details over Xilinx Virtex-6 FPGA are provided. Logistic map is the simplest chaotic system and has high potential to be used to design a stream cipher for real-time embedded systems. Its simple construct and non-linear dynamics makes it a common choice for such applications. In this paper, we present a Modified Logistic Map (MLM) which improves the performance of Logistic Map in terms of higher Lyapunov exponent and uniformity of bifurcation map. It also avoids the stable orbits of logistic map giving a more chaotic behavior to the system. A stream cipher is built using MLM and random feedback scheme. The proposed cipher gives 16 bits of encrypted data per clock cycle. The hardware implementation results over Xilinx Virtex-6 FPGA give a synthesis clock frequency of 93 MHz and a throughput of 1.5 Gbps while using 16 hardware multipliers. This makes the cipher suitable for embedded devices which have tight constraints on power consumption, hardware resources and real-time parameters.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.