Abstract
A novel channel estimation method based on deep learning algorithm is proposed for large-scale IoT networks. We consider asymmetric backscatter communication system to maintain low-power at sensor nodes. In order to obtain channel data, we design denoising autoencoder which consists of encoder with Feedforward Neural Network (FNN) and decoder with Convolutional Neural Network (CNN). Finally, the channel estimation error is minimized, while the pilots are optimized. Especially, we adopt beamforming technique that relies only on cascaded channel data to reduce complexity in multi-sensor system. It is shown that the accuracy is slightly degraded while the complexity is greatly reduced.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.