Abstract

The anterior cruciate ligament (ACL) is critical for controlling the motion of the knee joint, but it is prone to injury during sports activities and physical work. If left untreated, ACL injuries can lead to various pathologies such as meniscal damage and osteoarthritis. While previous studies have used deep learning to diagnose ACL tears, there has been a lack of standardization in human unit classification, leading to mismatches between their findings and actual clinical diagnoses. To address this, we perform a triple classification task based on various tear classes using an ordinal loss on the KneeMRI dataset. We utilize a channel correction module to address image distribution issues across multiple patients, along with a spatial attention module, and test its effectiveness with various backbone networks. Our results show that the modules are effective on various backbone networks, achieving an accuracy of 83.3% on ResNet-18, a 6.65% improvement compared to the baseline. Additionally, we carry out an ablation experiment to verify the effectiveness of the three modules and present our findings with figures and tables. Overall, our study demonstrates the potential of deep learning in diagnosing ACL tear and provides insights into improving the accuracy and standardization of such diagnoses.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call