Abstract

Benzene is known to be highly toxic to a variety of cell types, including lymphocytes. A previous study showed that T-lymphocyte immune function disorder might be related to benzene exposure. To elucidate characteristics of TCR signal transduction in benzene-exposed workers, expression levels of CD3γ, CD3δ, CD3ϵ, and CD3ζ genes in peripheral blood mononuclear cells (PBMC) were analyzed. Real-time RT-PCR using SYBR Green I was used to detect CD3 gene expression levels in PBMC from 20 benzene-exposed workers, seven workers with chronic mild benzene poisoning, five workers with chronic severe benzene poisoning and 14 healthy individuals (controls). The relative mRNA expression level was analyzed by the 2−Δct × 100% method. In benzene-exposed worker cells, significantly higher CD3δ, CD3ϵ, and CD3ζ, expression levels were observed as compared with values for cells from the healthy controls. In the workers with chronic severe benzene poisoning, lymphocyte CD3γ, CD3ϵ, and CD3ζ gene expression levels were significantly lower than in control cells. Lymphocytes from chronic mildly benzene- poisoned workers evinced two different gene expression patterns, i.e., CD3γ and CD3ϵ levels were similar to those in the benzene-exposed worker cells, but CD3δ and CD3ζ expression levels were significantly lower relative to those in cells from chronic severely-benzene-poisoned counterparts. It remained to be determined if these reductions in expression of these genes presage or are indicative of deficiencies in the activities of T-lymphocytes in these workers. For now, it is hoped that this study may contribute to a better understanding of the disorders in cellular immunity frequently found with benzene-exposed workers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.