Abstract

Low-carbon transition of energy systems is an inevitable trend to address climate change challenges. For developing regions, proper planning is essential for reducing transition costs during low-carbon transition of their energy systems, featuring a higher proportion of intermittent renewable power connected to power grids. Impact of uncertainty must be considered for more feasible planning of peak-shaving and energy storage units. In this study, a chance-constrained programming approach to optimal planning of low-carbon transition of a regional energy system is presented. This approach considers uncertainties of wind power, photovolatic (PV) power and load to ensure power supply reliability. A developing region in central China is taken as a case study. Results show that considering uncertainty, an additional 4.79% of power generation capacity needs to be installed per year on average, with a 3.02% increase in the transition cost. Finally, sensitivity analysis results are provided, showing that a rapid increase in transition costs occurs when the confidence level exceeds 99%. The results in this study provide references for decision-makers to plan the low-carbon transition of energy systems as well as weighing transition costs against energy supply stability.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call