Abstract
On the basis of an initial interest in symmetric cryptography, in the present work we study a chain of subgroups. Starting from a Sylow $2$-subgroup of AGL(2,n), each term of the chain is defined as the normalizer of the previous one in the symmetric group on $2^n$ letters. Partial results and computational experiments lead us to conjecture that, for large values of $n$, the index of a normalizer in the consecutive one does not depend on $n$. Indeed, there is a strong evidence that the sequence of the logarithms of such indices is the one of the partial sums of the numbers of partitions into at least two distinct parts.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.