Abstract

Benefitting from their long carrier diffusion lengths, low trap densities and high carrier mobilities, metal halide perovskites are of great value in the field of energy and optical communications. Herein, we propose a reversible organic cation reaction for (CH3)2CNHCH3PbBr3/CH3NH3PbBr3 core-shell microwires (MWs), in which (CH3)2CNHCH3PbBr3 grow on bulk CH3NH3PbBr3 in acetone and then convert back to CH3NH3PbBr3 on the surface with the action of water. The core-shell MWs present excellent stability for more than 454 days with over 80% humidity. Moreover, the employed core-shell heterostructure significantly increases the photoluminescence lifetime and improves the rise/recovery response. The (CH3)2CNHCH3PbBr3/CH3NH3PbBr3 core-shell heterostructure demonstrates excellent stability and fast response (2.8 ms/0.8 ms), which is anticipated to find comprehensive applications in future optical communication of one-dimensional devices.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.