Abstract

In this study, we developed a novel electrochemical biosensor based on CRISPR/Cas12a (E-CRISPR) for the rapid and sensitive detection of Salmonella Typhimurium (S. Typhimurium). The CRISPR/Cas12a system was applied to identify S. Typhimurium gene and induce signal changes in electrochemical measurement. The colloidal gold and MXene (CG@MXene) nanocomposites were synthesized and immobilized to improve the performance of the biosensor by decreasing the background noise. The formation process of CG@MXene was well characterized, and experiment conditions were fully optimized. Under the optimal conditions, the proposed E-CRISPR biosensor exhibited excellent sensitivity for S. Typhimurium, with a limit of detection (LOD) of 160 CFU/mL, and great specificity against other common foodborne pathogens. Furthermore, the feasibility of the E-CRISPR biosensor was evaluated by analyzing S. Typhimurium-spiked chicken samples, with a recovery rate ranging from 100.46% to 106.37%. In summary, this research proposed a novel E-CRISPR biosensor from a new perspective to detect S. Typhimurium which can be an alternative approach for bacterial detection in the food supply chain.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call