Abstract
AbstractWe develop a CFL‐free, explicit characteristic interior penalty scheme (CHIPS) for one‐dimensional first‐order advection‐reaction equations by combining a Eulerian‐Lagrangian approach with a discontinuous Galerkin framework. The CHIPS method retains the numerical advantages of the discontinuous Galerkin methods as well as characteristic methods. An optimal‐order error estimate in the L2 norm for the CHIPS method is derived and numerical experiments are presented to confirm the theoretical estimates. © 2009 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2010
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Numerical Methods for Partial Differential Equations
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.