Abstract
The coupling of computational fluid dynamics (CFD) and the discrete element method (DEM) permits to simulate complex multiphase flows, and has been widely used for research and industrial purposes. However, this approach relies on many sub-models and parameters, whose influence is not always clear. In this work, we performed an extensive sensitivity analysis, modifying one sub-model or parameter at a time and assessing the effect on the results. We run our simulations through the commercial program Ansys Fluent 19.1. We considered experimental data reported in literature for a pseudo bi-dimensional spouted bed, containing 2.033 mm glass particles. Spouted beds are suitable to process coarse, poli-dispersed and irregular particles, and are hence a popular research subject, often simulated through the CFD-DEM approach. Our results slightly overestimate the highest position reached by the particles, possibly because of the limits in the mesh refinement. The sensitivity analysis shows that the drag model, restitution coefficient, friction coefficient and Magnus lift model have the strongest influence on the particles' trajectories. It is important to include turbulence, the Magnus lift effect and to consider the rotation of particles. These results clarify the influence of the considered parameters and models in CFD-DEM, and can be considered for the optimisation of CFD-DEM simulations. Thanks to the conclusions of the sensitivity campaign, we enhanced the accuracy of our model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.