Abstract

A computational fluid dynamics (CFD) approach to simulate reacting flow in a hot coke oven gas (HCOG) reformer is presented. The HCOG was reformed by non-catalytic partial oxidation in a tubular reactor (0.6m i.d. and ∼4.1m long) with four oxygen nozzles (0.0427m i.d.), which was installed on a platform of an operating coke oven. The reforming of HCOG, a multi-component mixture, in a turbulent flow was simulated numerically by considering both chemical reactions and fluid dynamics. The detailed chemical kinetic model, originally consisting of more than 2000 elementary reactions with 257 species, was reduced to 410 reactions with 47 species for realising a kinetic model of finite rate reactions with a k–ε turbulence model. The calculation was carried out using the eddy dissipation concept (EDC) coupled with the kinetic model, and accelerated using the in situ adaptive tabulation (ISAT) algorithm. Numerical simulations could reproduce the reformed gas compositions fairly well, such as H2, CO, CO2, and CH4, as well as the temperature profile in a HCOG reformer as measured by thermocouples.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.