Abstract

ABSTRACTThis paper presents a reanalysis of four axial‐flow rotor simulation datasets to study the relationship between thrust and axial induction factor. We concentrate on high‐thrust conditions and study variations in induction factor and loads across the span of the different rotor blades. The datasets consist of three different axial‐flow rotors operating at different tip‐speed ratios and, for one dataset, also at different blockage ratios. The reanalysis shows differences between the blade‐resolved CFD results and a widespread empirical turbulent wake model (TWM) used within blade element momentum (BEM) turbine models. These differences result in BEM models underestimating thrust and especially power for axial‐flow rotors operating in high‐thrust regimes. The accuracy of BEM model predictions are improved substantially by correcting this empirical TWM, producing better agreement with blade‐resolved CFD simulations for thrust and torque across most of the span of the blades of the three rotors. Additionally, the paper highlights deficiencies in tiploss modelling in common BEM implementations and highlights the impact of blockage on the relationship between thrust and axial induction factors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.