Abstract

Despite heavy insulation, the unavoidable heat leak from the surroundings into an LNG (Liquefied Natural Gas) storage tank causes boil-off-gas (BOG) generation. A comprehensive dynamic CFD simulation of an onshore full-scale LNG tank in a regasification terminal is presented. LNG is approximated as pure methane, the axisymmetric VOF (Volume of Fluid) model is used to track the vapour-liquid interface, and the Lee model is employed to account for the phase change including the effect of static pressure. An extensive investigation of the heat ingress magnitude, internal flow dynamics, and convective heat transfer gives useful insights on the boiling phenomena and a reliable quantification of the BOG. Surface evaporation is the governing boiling mechanism and nucleate boiling is unlikely with proper insulation. The critical wall superheat marking the transition from surface evaporation to nucleate boiling is estimated as 2.5–2.8 K for LNG.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.