Abstract

This paper will present the main results of the aerodynamic design and analysis for flow control applied to trailing edge of wings and profiles. This work has been conducted in the framework of the European project AFLoNext aiming at developing technologies allowing for an improvement of the performance and loads situation in the operational domain. The technologies are expected to provide an increase in aerodynamic efficiency and a structural weight reduction for the design flight conditions with a potential for 1–2% fuel savings and corresponding emission reduction. Numerical simulations are performed on 2D and 3D test cases. Where available, a comparison with experimental data is performed. High-speed flow is considered, to investigate a transonic configuration representative of cruise conditions. Trailing edge devices (TED) such as fluidic Gurney flaps or micro-jets for circulation control are used for assessing the possibility of delaying the buffet onset or increasing the maximum achievable lift, thus extending the flight envelope of an aircraft. The purpose of the present paper is to present the result of the work performed by the different partners involved in the project.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call