Abstract

Among the several aspects of decay products behavior, deposition is of special significance because of its prominent role in the activity removal from the environment, which eventually results in the occurrence of decay product disequilibrium with the parent gas. This point is particularly important in case of thoron dosimetry where thoron progeny 212Pb accounts for the most of the radiological dose. The deposition depends on the size distribution of decay products and the structure of air turbulence at the air-surface interface. In the present work, the effect of varying air-flow (fan speed) and aerosol count median diameter (CMD) was studied on the deposition and distribution profile of 212Pb using computational fluid dynamics (CFD). The simulations have been carried out in a cubical calibration chamber of volume 8 m3, facilitated at RP&AD, BARC. Simulated results showed that the increase of total depositional loss rate of attached fraction of 212Pb due to increase of the fan speed was significant for CMD up to 400nm, beyond which this effect started becoming less prominent with increasing diameter. Besides, a minimum of the total depositional loss rate curve was seen to be shifted to the higher CMD with increase of the fan speed. CFD results were found to be in good agreement with experimental observations obtained in the controlled conditions with thoron source.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call