Abstract

An advanced aerodynamic design optimization system for steam turbine stages considering rotor blade tip leakage and blade end-wall non-axis-symmetric contouring has been developed. Using this system, fluid dynamic optimizations were carried out for a steam turbine stage with stator and rotor blades. The system includes parametric modeling of blade and end-wall contouring, evaluation system with in-house or package CFD software and optimization strategy module. The designs of rotor blade and hub end-wall surface in a typical large-scale high-pressure steam turbine stage were optimized in order to know this design optimization impact on enhancing the stage efficiency. Results show that: from the current well designed high pressure steam turbine stage, the demonstrated efficiency enhancement with the present optimum design is around 0.2% under consideration of rotor tip leakage. Design cycle could be greatly shortened by parallel optimization algorithm and cluster PC, and especially four days could be sufficient for an optimization with one thousand iterations on 20 CPUs of 2.0G cluster PC.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.