Abstract

Abstract We present a certified reduced basis (RB) framework for the efficient solution of PDE-constrained parametric optimization problems. We consider optimization problems (such as optimal control and optimal design) governed by elliptic PDEs and involving possibly non-convex cost functionals, assuming that the control functions are described in terms of a parameter vector. At each optimization step, the high-fidelity approximation of state and adjoint problems is replaced by a certified RB approximation, thus yielding a very efficient solution through an “optimize-then-reduce” approach. We develop a posteriori error estimates for the solutions of state and adjoint problems, the cost functional, its gradient and the optimal solution. We confirm our theoretical results in the case of optimal control/design problems dealing with potential and thermal flows.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.